Time-dependent analysis of length of stay and mortality due to urinary tract infections in ten developing countries: INICC findings

Victor D. Rosenthal a,*, Arpita Dwivedy b, María Eugenia Rodríguez Calderón c, Saban Esen d, Héctor Torres Hernández e, Rédoane Abouqal f, Eduardo A. Medeiros g, Teodora Atencio Espinoza h, S.S. Kanj i, Achilleas Gikas j, Adrian G. Barnett k, Nicholas Graves k, International Nosocomial Infection Control Consortium (INICC) Members l

a International Nosocomial Infection Control Consortium, Buenos Aires, Argentina
b Dr L H Hirananadani Hospital, Mumbai, India
c Hospital La Victoria, Bogotá, Colombia
d Ondokuz Mayis University Medical School, Samsun, Turkey
e Hospital General de Irapuato, Irapuato, Mexico
f Ibn-Sina Hospital, Medical ICU, Rabat, Morocco
h Hospital São Paulo, São Paulo, Brazil
i Hospital Regional de Pucallpa, Pucallpa, Peru
j American University of Beirut Medical Center, Beirut, Lebanon
k University Hospital of Heraklion, Heraklion, Greece
l School of Public Health, Queensland University of Technology, Brisbane, Australia

Accepted 10 December 2010
Available online 17 December 2010

KEYWORDS
International nosocomial infection control consortium; INICC;
Urinary tract infections;
Length of stay;

Summary Objectives: To estimate the excess length of stay (LOS) and mortality in an intensive care unit (ICU) due to a Catheter associated urinary tract infections (CAUTI), using a statistical model that accounts for the timing of infection in 29 ICUs from 10 countries: Argentina, Brazil, Colombia, Greece, India, Lebanon, Mexico, Morocco, Peru, and Turkey. Methods: To estimate the extra LOS due to infection in a cohort of 69,248 admissions followed for 371,452 days in 29 ICUs, we used a multi-state model, including specific censoring to ensure that we estimate the independent effect of urinary tract infection, and not the combined effects of...
Introduction

Catheter-associated urinary tract infections (CAUTI) are a worldwide problem that may lead to increased patient morbidity, cost, and mortality.\(^1\)\(^-\)\(^3\) The literature is divided on whether there are real effects from CAUTI on length of stay or mortality. Platt\(^4\) found the costs and mortality risks to be large yet Graves et al found the opposite.\(^5\) A review of the published estimates of the extra length of stay showed results between zero and 30 days.\(^6\) The differences in estimates may have been caused by the different epidemiological methods applied. Accurately estimating the effects of CAUTI is difficult because it is a time-dependent exposure. This means that standard statistical techniques, such as matched case-control studies, tend to overestimate the increased hospital stay and mortality risk due to infection. The aim of the study was to estimate excess length of stay and mortality in an intensive care unit (ICU) due to a CAUTI, using a statistical model that accounts for the timing of infection. Data collected from ICU units in lower and middle income countries were used for this analysis.\(^7\),\(^8\) There has been little research for these settings, hence the need for this paper.

Methods

We aimed to estimate the impact of infection on both length of stay and risk of death. Infection is a time-dependent variable, and so it is essential to use statistical methods that correctly account for this, otherwise estimated effects can be severely biased.\(^9\),\(^10\) Therefore to estimate the extra length of stay due to infection we used the methods described in Allignol et al,\(^11\) and to estimate the risk of mortality due to infection we used the methods described in Wolkewitz et al.\(^12\) Both methods arrange the data according to the multi-state format shown in Fig. 1. A patient enters the ICU and becomes susceptible to infection after having a urinary catheter. If the time to catheter is not modelled then the estimated effects of infection are prone to the "length bias."\(^13\) Once a patient has had a urinary catheter they may either be discharged or die, or they may first become infected. If the time to infection is not modelled then this leads to the time-dependent bias.\(^9\)

We censored patients when it was not known whether they died or were discharged, using a censoring date of their last day in ICU. We also censored patients who contracted another unrelated infection (e.g., an unrelated blood stream infection) using the date of the unrelated infection. This censoring is used to ensure that we estimate the independent effect of urinary tract infection, and not the combined effects of multiple infections.

We estimated the extra length of stay and increased risk of death independently in each country. We then combined the results using a random effects meta-analysis. As a sensitivity analysis we re-ran the meta-analysis leaving out each country in turn. This analysis assesses whether there is a particular country that has a strong influence on the estimated overall effect. As another sensitivity analysis we first stratified the admissions according to the Average Severity Illness Score

![Figure 1](https://example.com/figure1.png)

Figure 1 Multi-state model used to estimate the time-dependent effect of nosocomial infection on length of stay and risk of death.

Table 1

Sample characteristics by country. All statistics for admissions with a urinary catheter, except the Admissions column.

<table>
<thead>
<tr>
<th>Country</th>
<th>Admissions</th>
<th>Admissions with a catheter (%)</th>
<th>Length of stay, days</th>
<th>Mean age, years</th>
<th>Men (%)</th>
<th>Dead (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>17,910</td>
<td>10,528 (59)</td>
<td>79,788</td>
<td>71</td>
<td>5231 (29)</td>
<td>2634 (15)</td>
</tr>
<tr>
<td>Brazil</td>
<td>2452</td>
<td>1904 (78)</td>
<td>24,074</td>
<td>56</td>
<td>1054 (43)</td>
<td>520 (21)</td>
</tr>
<tr>
<td>Colombia</td>
<td>8155</td>
<td>5480 (67)</td>
<td>44,354</td>
<td>50</td>
<td>2923 (36)</td>
<td>1076 (13)</td>
</tr>
<tr>
<td>Greece</td>
<td>105</td>
<td>87 (83)</td>
<td>912</td>
<td>66</td>
<td>56 (53)</td>
<td>22 (21)</td>
</tr>
<tr>
<td>India</td>
<td>24,583</td>
<td>17,930 (73)</td>
<td>106,981</td>
<td>55</td>
<td>12,669 (52)</td>
<td>1951 (8)</td>
</tr>
<tr>
<td>Lebanon</td>
<td>383</td>
<td>378 (99)</td>
<td>3386</td>
<td>62</td>
<td>266 (69)</td>
<td>81 (21)</td>
</tr>
<tr>
<td>Mexico</td>
<td>3423</td>
<td>2187 (64)</td>
<td>15,974</td>
<td>41</td>
<td>919 (27)</td>
<td>359 (10)</td>
</tr>
<tr>
<td>Morocco</td>
<td>2584</td>
<td>1435 (56)</td>
<td>12,046</td>
<td>45</td>
<td>740 (29)</td>
<td>660 (26)</td>
</tr>
<tr>
<td>Peru</td>
<td>1970</td>
<td>1506 (76)</td>
<td>9497</td>
<td>53</td>
<td>811 (41)</td>
<td>283 (14)</td>
</tr>
<tr>
<td>Turkey</td>
<td>7683</td>
<td>5729 (75)</td>
<td>74,440</td>
<td>50</td>
<td>3474 (45)</td>
<td>1909 (25)</td>
</tr>
<tr>
<td>Total</td>
<td>69,248</td>
<td>47,164 (68)</td>
<td>371,452</td>
<td>57</td>
<td>28,143 (41)</td>
<td>9495 (14)</td>
</tr>
</tbody>
</table>

© 2011 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

ELOS and mortality due to CAUTI 137
We estimated the extra length of stay and risk of death for admissions in the lower three ASIS categories ("healthier" group), and in the upper two categories ("sicker" group). ASIS was not collected in Greece or Lebanon, so they were excluded from this sensitivity analysis.

For all analyses the R 2.4.1 software was used (R Foundation, Vienna, Austria), using the ‘etm’ library to estimate the extra length of stay due to infection, and the ‘rmeta’ library for meta-analysis.

Results

Table 1 shows the summary statistics by country. Across all ten countries there were 371,452 ICU days observed after the patient had a urinary catheter. On average 14% of admissions ended in death.

Table 2 shows the estimated extra LoS and risk of death due to infection by country and the meta-analysis summary. On average a UTI infection led to 1.59 extra days in the ICU and a 1.15 increase in the risk of death.

![Figure 2](image1.png)
Figure 2 Extra length of stay in days due to a nosocomial urinary tract infection in each country and the overall extra length of stay from a meta-analysis. The squares are the mean estimates and the horizontal lines the 95% confidence intervals. The squares are inversely proportional to the standard error of the estimate.

![Figure 3](image2.png)
Figure 3 Relative risk of death due to a nosocomial urinary tract infection in each country and the overall relative risk from a meta-analysis. The relative risk axis is on a log scale. The squares are the mean estimates and the horizontal lines the 95% confidence intervals. The size of the squares is inversely proportional to the standard error of the estimate.
(95% CI: 0.58, 2.59 days) and a 15% increase in the risk of death (95% CI: 3, 28%).

Fig. 2 plots the mean extra length of stay in each country and the meta-analysis. The extra length of stay was far longer in Turkey (mean = 5.88 days). The result from Turkey is the main driver of the statistically significant heterogeneity in the extra LoS between countries (p-value = 0.015). Without Turkey the overall extra LoS drops from an average of 1.59 days to 1.11 days.

Fig. 3 plots the mean relative risk of death in each country and the meta-analysis. There was more consistency across countries in the relative risk of death compared with the extra LoS. The most unusual result was from Colombia, where an infection reduced the relative risk to 0.75, although this reduction was not statistically significant (95% CI for RR: 0.47, 1.17). Without Colombia the overall relative risk of death rose slightly from 1.15 to 1.18.

Table 3 shows the results after stratifying on ASIS. The relative risk of death remained high in the “healthier” ASIS group (mean RR = 1.16), but the increase was now not statistically significant. This lack of statistical significance could be due to a drop in sample size, rather than a change in the mean. In the “sicker” ASIS group the mean relative risk of death was much closer to one, and the increased risk was no longer statistically significant. The estimated extra lengths of stay were similar to the unstratified estimate for both ASIS groups.

Conclusions

We used the best available statistical methods to estimate the extra length of stay and risk of death due to nosocomial urinary tract infection. These methods treat both the timing of the catheter and the timing of infection as time-dependent variables (Fig. 1). This means the results are not prone to the length bias (which would underestimate the risks of infection), or the time-dependent bias (which would overestimate the risks of infection).

The results were quite consistent between countries and showed a modest increase in the extra length of stay due to infection as, on average, there were 1.59 extra days. This increase was strongly statistically significant, and had a similar mean after stratifying on ASIS score. A relatively small increase in hospital stay still represents an important and potentially costly consequence of infection.

The relative risk for mortality was 1.15 on average, and again this increase was strongly statistically significant. However, this strong effect disappeared after stratifying on ASIS score. This suggests that the original increased risk was due to confounding by ASIS. We know that sicker patients have an increased risk of death, the confounding would be complete if sicker patients were also more likely to get urinary tract infections. Clec’h et al had similar findings as they found a statistically significant increased risk of death for patients with a UTI that disappeared after matching and adjustment.14

The method we used to estimate the extra LoS and risk of death due to infection is not able to adjust for important covariates such as age. However, a recent study by Beyersmann et al demonstrated that adjusting for the timing of infection is likely to be more important than adjusting for confounders, as they found that adjusting for 20 potential confounders did not redeem the time-dependent bias.15

Intensive care units of developing countries should improve the implementation of evidence based strategies in order to prevent catheter associated urinary tract infections, because they are associated with extra length of stay and mortality.

Acknowledgments

The authors thank the many health care professionals at each member hospital who assisted with the conduct of surveillance in their hospital, including the surveillance nurses, clinical microbiology laboratory personnel, and the physicians and nurses providing care for the patients during the study; without their cooperation and generous assistance this INICC would not be possible; Mariano Vilar, Debora López Burgardt, and Alejo Ponce de Leon, who work at INICC headquarters in Buenos Aires, for their hard work and commitment to achieve INICC goals; the INICC country coordinators (Altaf Ahmed, Carlos A. Álvarez Moreno, Apisarnthanarak Anucha, Luis E. Cuéllar, Bijie Hu, Hakan Leblebicioglu, Eduardo A. Medeiros, Yatin Mehta, Lul Raka, Toshihiro Mitsuda, and Virgilio Bonilla Sanchez); the INICC Advisory Board (Carla J. Alvarado, Gary L. French, Nicholas Graves, William R. Jarvis, Patricia Lynch, Dennis Maki, Russell N. Olmsted, Didier Pittet, Wing Hong Seto and William Rutala), who have so generously supported this unique international infection control network.

Appendix. International Infection Control Consortium, listed by country alphabetically

Argentina: Sandra Guzman (Centro Médico Bernal, Buenos Aires); Luis Pedro Flynn, Diego Rausch, Alejandro Spagnolo (Sanatorio Británico, Rosario); Guillermo Benchetrit, Claudio Bonaventura, María de los Angeles Caridi, Adriana Messina, Beatriz Ricci (Centro Gallego de Buenos Aires, Buenos Aires); María Laura Frias, Griselda Churrúrør (Clínica Modelo de Lanús, Lanús); Daniel Sztokhamer (Clínica

Table 3 Estimated extra length of stay (LoS) and relative risk of death due to a nosocomial urinary tract infection stratified by Average Severity Illness Score (ASIS). The higher the ASIS score the sicker the patient.

<table>
<thead>
<tr>
<th>ASIS (categories)</th>
<th>Admissions</th>
<th>Total extra LoS, days</th>
<th>Relative risk of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Healthier” (1–3)</td>
<td>22,148</td>
<td>1.44 (0.24, 3.12)</td>
<td>1.16 (0.96, 1.40)</td>
</tr>
<tr>
<td>“Sicker” (4–5)</td>
<td>15,150</td>
<td>1.73 (0.64, 2.83)</td>
<td>1.04 (0.88, 1.23)</td>
</tr>
<tr>
<td>Total</td>
<td>37,298</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estrada, Buenos Aires); Luisa C. Soroka (Hospital Interzonal General de Agudos Evita, Lanús); Silvia Forciniti, Marta Blasco, Carmen B. Lezcano (Hospital Interzonal General de Agudos Pedro Fiorito, Avellaneda); Carlos Esteban Lastra (Hospital Narciso López, Lanús); Mónica Viegas, Beatriz Marta Alicia Di Núñila, Diana Lanzetta, Leonardo J. Fernández, Maria Adelaida Rossetti, Adriana Romani, Claudia Magiaggi, Clarisa Barolin, Estela Martínez (Hospital Interzonal General de Agudos Presidente Perón, Avellaneda) Alicia Kobylarz (Hospital Materno Infantil Eduardo Oller Solano).

Brazil: Gorki Grinberg, Iselde Bucher Ferreira, Raquel Bauer Cechinel (Hospital General Porto Alegre, Porto Alegre); Eduardo A. Medeiros, Daniela Bicudo Angelieri (Hospital São Paulo, São Paulo); Simone Nouver, Rosa Vianna, Ana Lucía Machado, Elaine Gama, Doris Blanquet (Hospital Universitario Clementino Fraga Filho (HUCFF), Rio de Janeiro); Bruna Boaria Zanandrea, Carolina Rohokhl, Marcos Regual (Hospital São Miguel, Joaçaba); Reinaldo Salomao, Maria Angela Maretii da Silva, Clélia Heloisa de Jesus Silva, Margarete Vilins, Sergio Bleeher (Hospital Santa Marcelina, São Paulo); Jamile Leda Spessato, Ricardo Scopel Pasini, Shaline Ferla (Hospital Universitario Santa Terezinha, Joaçaba); Gorki Grinberg (Maternidade e Hospital Dia Santa Luzia, Balneario Camboriú).

Colombia: Otto Sussmann, Beatriz Eugenia Mogica (Clínica Nueva, Bogotá); Wilmer Villamil Gómez, Guillermo Ruiz Vergara, Patrick Arrieta (Clínica Santa María, Sucre); Catherine Rojas, Humberto Beltran, Pervin Paz (Centro Pediátrico del Olaya, Bogotá); Otto Sussmann, Maria del Pilar Torres Navarrete (Clínica Palermo, Bogotá); Wilmer Villamil Gómez, Luis Dajud, Mariela Mendoza, Patrick Arrieta (Clínica de la Sabana, Sucre); Carlos Álvarez Moreno, Claudia Linares (Hospital Universitario San Ignacio, Universidad Pontificia Javeriana, Bogotá); Carlos Álvarez Moreno, Laline Osorio (Hospital Simón Bolívar EBE, Bogotá); Nayide Barahona Guzmán, Marena Rodríguez Ferrer, Guillermo Sarmiento Villa, Alfredo Lagares Guzmán (Universidad Simón Bolívar, Barranquilla); Narda Olarte, Albert Rañ, Alberto Valderrama (Hospital El Tunel EBE, Bogotá); Julio Garzón Aguélo (Hospital Vidalmedica, Bogotá.), Heidi Johanna Muñoz (Clínica Reina Sofia, Bogotá).

Greece: Kalliopi Chaniotaki, Constantinos Tsoutsis, Dimitrios Bampalis (University Hospital of Heraklion, Heraklion).

India: Subhash Kumar Todi; Arpita Bhakta, Mahuya Bhattacharjee (AMRI Hospitals, Kolkata); R. Krishna Kumar, Kavitth Radhakrishnan (Amrita Institute of Medical Sciences & Research Center, Kochi); F. E. Udwaadia, Reshma Ansari, Aruna Poojary, Geeta Kopikkar, Lata Bhandarkar, Shital Jadhav (Breath Candy Hospital Trust, Mumbai); Nagamani Sen, Kan-dasamy Subramani (Christian Medical College, Vellore); Anil Karlekar (Escorts Heart Institute & Research Center, New Delhi); Camilla Rodrigues, Ashit Hegd, Farahad Kapadia (PD Hinduja National Hospital & Medical Research Center, Mumbai); Samir Sahu (Kalinga Hospital, Bhubaneswar); Ramachandran Gopinath, Nallagonda Ravindra (Nizam’s Institute of Medical Sciences, Hyderabad); Sheila Nainan Myatra, J. V. Divatia, Rohini Kelkar, Sanjay Biswas, Sandhya Raut, Sulochana Sampath, Rishi Kumar (Tata Memorial Hospital, Mumbai); Murali Chakravarthy, B.N.Gokul, Sukanya R., Leema Pushparaj (Wockhardt Hospitals, Bangalore), Suvin Shetty, Sheena Binu (Dr L H Hiranandani Hospital, Mumbai).

Lebanon: Nada Zahreddine, Nisreen Sidani, Lamia Alamaddini Jurdi, Zeïna Kanafani (American University of Beirut Medical Center, Beirut).

Mexico: Martha Sánchez López (Hospital General de la Celaya, Celaya); Amalia Chávez Gómez, Jaime Rivera Morales, Julián Enrique Valero Rodríguez (Hospital General de Irapuato, Irapuato); Martha Sobreyra Oropeza (Hospital de La Mujer, Mexico City); Manuel Sigfrido Rangel-Frausto (Specialities IMSS Hospital, Mexico City); José Martínez Soto (Gabriel Mancera IMSS Hospital, Mexico City), Alberto Armas Ruiz, Roberto Campuzano, Jorge Mena Brito (Centro Médico la Raza, Mexico City); Francisco Higuera (Hospital General de México, Mexico City).

Morocco: Khalid Abidi, Naoufel Madani, Amine Ali Zegg-wagh, Tarek Dendane (Ibn-Sina Hospital, Medical ICU, Rabat), Amina Barkat, Naima Lamdouar Bouazzaooubi, Kabiri Meryem (Children Hospital of Rabat, Rabat).

Peru: Luis Cuellar, Rosa Rosales, Luis Isidro Castillo Bravo, María Linares Cáceres (Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima); Favio Sarmiento López (Hospital Regional de Pucallpa, Pucallpa); Eduardo Fernández Maldonado, Manuel Jesús Mayorga Espichan, Liliana Echenique (Clínica San Pablo, Lima); Alex Canasteneda Sabogal, Liliana Paredes Goicochea, Abel Arroyo Sánchez, Guiller-o Standard, Algeria; Jorge García Ventura, Miguel Ramírez Aguilar, Niler Segura Plasencia, Teófilo Rodríguez (Hospital Victor Lazarte Echegaray, Trujillo).

Turkey: A. Nevzat Yalcin, Özge Turhan, Sevim Keskin, Eylul Gümüş, Oğuz Dursun (Akdeniz University, Antalya); Davut Ozdemir, Ertugrul Gucu, Selvi Erdogan (Duzce Medical School, Duzce); Sercan Ulusoy, Bilgin Arda, Feza Bacao- koglu (Ege University Medical Faculty, Izmir); Emine Alp, Bilgehan Aygen (Erciyes University, Faculty of Medicine, Kayseri); Dilek Arman, Kenan Hizel, Kesver Özdemir (Gazi University Medical School, Ankara); slides uzun (German Hospital, Istanbul); Yesim Cetinkaya Sardan, Ricardo Scopel Pasini, Amanda Chacón, Guillermo Ríos Alva, Jorge García Pascual, Muhammed Ramírez Aguilar, Niler Segura Plasencia, Teófilo Rodríguez (Hospital Victor Lazarte Echegaray, Trujillo).

References:

1. Rosenthal VD, Guzman S, Migone O, Crnich CJ. The attributable cost, length of hospital stay, and mortality of central line-associated bloodstream infection in intensive care departments in