Six-year study on peripheral venous catheter-associated BSI rates in 262 ICUs in eight countries of South-East Asia: International Nosocomial Infection Control Consortium findings

1 International Nosocomial Infection Control Consortium (INICC), Buenos Aires, Argentina
2 Infection Control Professionals of Mongolia, and Insaar Hospital, Ulaanbaatar, Mongolia
3 BM Birds Heart Research Centre, Kolkata, India
4 The Calcutta Medical Research Institute, Kolkata, India
5 Dhanaraj Mangalshanker Hospital, Puna, India
6 Department of Anestheology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
7 G. Kuppuswamy Naidha Memorial Hospital, Coimbatore, India
8 Medanta The Medicity, New Delhi, India
9 Amidh Intensive Care Unit, University Malaya Medical Centre, Kuala Lumpur, Malaysia
10 Bach Mai Hospital, Hanoi, Vietnam
11 Phyathai 1 Hospital, Phra Nakhon, Thailand
12 Cardinal Sotnos Medical Center, San Juan, Philippines
13 Dong E People’s Hospital, Jundong, P.R. China
14 Garlands International Hospital, Kathmandu, Nepal
15 Deen Hospital, Kolkata, India
16 D. P. Hinduja National Hospital and Medical Research Centre, Mumbai, India
17 Dr. L H Hiranandani Hospital, Mumbai, India
18 Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, India
19 Breach Candy Hospital Trust, Mumbai, India
20 Advanced Medicare Research Institute Dharams Unit, Kolkata, India
21 Noble Hospital, Pune, India
22 Advanced Medicare Research Institute Mukundapur Unit, Kolkata, India
23 Apollo Main Hospital, Chennai, India
24 Peerless Hospital Research Center Ltd, Kolkata, India
25 Bombay Hospital & Medical Research Centre, Mumbai, India
26 Kovai Medical Center and Hospital, Coimbatore, India
27 Aster Medcity, Kochi, India
28 Shyamoli Speciality Hospital, Pune, India
29 King’s Hospital, Bhubaneswar, India
30 Karani Institute of Medical Sciences, Thiruvananthapuram, India
31 Indraprastha Apollo Hospital, New Delhi, India
32 Aravind Eye Hospital, Coimbatore, India
33 Rao Narsing Home, Pune, India
34 IHS and JSM Hospital, Bhubaneswar, India
35 Apollo Hospital, Borivali, India
36 Sethi Hospital, Mumbai, India
37 Shri Vindra Bhore Civil Hospital, Silvassa, India
38 Max Super Speciality Hospital, Dehradun, Dehradun, India
39 JIPDA Trauma Center, AIIMS, New Delhi, India
40 Greater Kailash Hospital, Indore, India
41 Global Hospital, Mumbai, India
42 Arvind Institute of Medical Sciences and Research Centre, Kochi, India
43 Bale Vithal Clinic, Kolkata, India
44 Christian Medical College, Vellore, India
45 Escorts Heart Institute & Research Centre, New Delhi, India
46 Mahana Gonda Hospital, Jagtap, India
47 Apollo Children’s Hospital, Chennai, India
48 Narayana Institute of Medical Sciences, Hyderabad, India
49 Holy Spirit Hospital, Mumbai, India
50 Passi Peribadi Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
51 Fortis Hospital, Bangalore, India
52 Max Super Speciality Hospital, Saket, New Delhi, India
53 Columbia Asia Hospital—Pataial, Patiala, India
54 AMRI Hospitals, Bhubaneswar, India
55 Dr. Balbhad Narawat Super Special Hospital, Mumbai, India
56 Birla Amrani General Hospital, Vadodara, India
57 Bombay Hospital Indore, Indore, India
58 Columbia Asia Referrals Hospital—Yedmonthpur, Bhubaneswar, India
59 Mahalanji Agrasen Hospital, New Delhi, India
60 Second General Hospital, Ulaanbaatar, Mongolia
61 Sir H. N. Reliance Foundation Hospital and Research Centre, Mumbai, India
62 Yangu Hospital, Shanghai, P.R. China
63 Pediatric Intensive Care, University Milano Medical Centre, Kuta Lumpar, Malaysia
64 Intensive Care Unit; Hospital Universitario Santes Maries, Kigali Kerat, Malaysia
65 Central State Hospital 1, Ulaanbaatar, Mongolia
66 Heathcote Los Banos Medical Center, Los Banos, Philippines
67 Thanh Nhien Hospital, Hanoi, Vietnam
68 Philippine General Hospital, Manila, Philippines
69 Philippine Heart Center, Manila, Philippines
70 St. Luke’s Medical Center—Quezon City, Manila, Philippines
71 Phyathai 1 Hospital, Bangkok, Thailand
72 Cho Ray Hospital, Hochiminh City, Vietnam

For a list of the remaining co-authors of this study, see Appendix 1.

Corresponding author:
Victor Daniel Rosenthal, International Nosocomial Infection Control Consortium (INICC), 11 de Septiembre 5467, Floor 12, Apt 1201, Buenos Aires 1429, Argentina. Email: victor_rosenthal@inicc.org
Abstract

Background: Short-term peripheral venous catheter–associated bloodstream infection rates have not been systematically studied in Asian countries, and data on peripheral venous catheter–associated bloodstream infections incidence by number of short-term peripheral venous catheter days are not available.

Methods: Prospective, surveillance study on peripheral venous catheter–associated bloodstream infections conducted from 1 September 2013 to 31 May 2019 in 262 intensive care units, members of the International Nosocomial Infection Control Consortium, from 78 hospitals in 32 cities of 8 countries in the South-East Asia Region: China, India, Malaysia, Mongolia, Nepal, Philippines, Thailand, and Vietnam. We applied US International Nosocomial Infection Control Consortium definition criteria and reported methods using the International Nosocomial Infection Control Consortium Surveillance Online System.

Results: We followed 83,295 intensive care unit patients for 369,371 bed-days and 376,492 peripheral venous catheter-days. We identified 999 peripheral venous catheter-associated bloodstream infections, amounting to a rate of 2.65/1000 peripheral venous catheter-days. Mortality in patients with peripheral venous catheter but without peripheral venous catheter–associated bloodstream infections was 4.53% and 12.21% in patients with peripheral venous catheter–associated bloodstream infections. The mean length of stay in patients with peripheral venous catheter but without peripheral venous catheter–associated bloodstream infections was 4.40 days and 7.11 days in patients with peripheral venous catheter and peripheral venous catheter–associated bloodstream infections. The microorganism profile showed 67.1% were Gram-negative bacteria: Escherichia coli (22.9%), Klebsiella spp (10.7%), Pseudomonas aeruginosa (5.3%), Enterobacter spp. (4.5%), and others (23.7%). The predominant Gram-positive bacteria were Staphylococcus aureus (11.4%).

Conclusions: Infection prevention programs must be implemented to reduce the incidence of peripheral venous catheter–associated bloodstream infections.

Keywords
Hospital infection, device-associated infections, antibiotic resistance, peripheral line–associated bloodstream infections, mortality, intensive care unit, surveillance

Date received: 11 September 2019; accepted: 3 March 2020

Introduction

One of the most habitually performed invasive procedures in healthcare facilities worldwide is short-term peripheral venous catheter (PVC) therapy.1-3 According to a recent systematic review, PVCs are widely used in industrialized countries, and around 200 millions of PVCs are inserted in US hospitals each year.4 In different point-prevalence studies, PVCs accounted to 80%, 90%, and 95% of all intravascular devices placed in inpatients in France, in Scotland, and in Spain, respectively.5

Such high prevalence of PVCs inserted regularly has been reported to result in considerable morbidity, excess length of stay (LOS) and hospital costs, prolonged antibiotic treatments, and bloodstream infections (BSIs).2

In addition, it was reported that the overall PVC failure rate ranges from 35% to 50%,1,3,4 with such failures being responsible for causing PVC-associated adverse events, such as phlebitis, occlusion/mechanical failure, infiltration, dislodgment, and BSIs.1,5-8

In industrialized countries, the incidence of peripheral venous catheter–associated bloodstream infections (PVCA-BSIs) in patients admitted to intensive care units (ICUs) has been reported to be 0.5 per 1000 PVCs-days in ICUs from Australia, Italy, and the United States11 and 0.67 PVCA-BSIs per 1000 PVCs-days in pediatric and neonatal ICUs from Australia.12

This study, which was conducted during 6 years, between 1 September 2013 and 31 May 2019, in 204 ICUs, in 78 hospitals from 32 cities of 8 countries (China, India, Malaysia, Mongolia, Nepal, Philippines, Thailand, and Vietnam), is the first comprehensive one to analyze the incidence rate, bacterial resistance, LOS, and mortality attributable to PVCA-BSI in countries of the South-East Asia Region.

Methods

Background on International Nosocomial Infection Control Consortium

International Nosocomial Infection Control Consortium (INICC) comprised of a group of hospitals, in 210 cities, in 54 countries in six World Health Organization (WHO) regions: Africa, the Americas, Eastern Mediterranean, Europe, South-East Asia, and Western Pacific.

INICC is the largest source of aggregate standardized international data on the epidemiology of healthcare-associated infections worldwide.7,13
Study design
This prospective, cohort surveillance study was conducted through an online platform called INICC Surveillance Online System (ISOS). Through ISOS, validation of each PVCA-BSI was checked by infection control professionals (ICPs) and the recorded signs of infection and the results of cultures, laboratory, and studies were scrutinized to ensure that Centers for Disease Control and Prevention (CDC)/National Healthcare Safety Network (NHSN) criteria for PVCA-BSIs were met.13,14

INICC methods
The ISOS includes the implementation of CDC/NHSN’s methodology, but adds other data to increase ICPs’ sensitivity to detect PVCA-BSIs and avoid underreporting.13

Outcome surveillance data collection and validation
This study presents the results of Outcome Surveillance of PVCA-BSIs in the ICU which follows the INICC protocol and allows the classification of prospective, active, cohort data into specific module protocols.

All patients with usage of a central line were excluded from this study. Only patients with PVC were included in this study.

ICPs collected daily data on PVCA-BSIs and denominator data, such as specific device-days in the ICUs, patient-days, microorganism profile, and bacterial resistance.

Each PVCA-BSI reported by an ICP was validated; that is, scrutinized to be certain that all criteria were satisfied to justify its recording as a PVCA-BSI.13

Training
The INICC team trained and provided ICPs with manuals, training tools, and tutorial movies and evaluated on a routine basis that ICPs perform surveillance correctly through the ISOS online platform.

Definitions
BSI. We used US CDC/NHSN’s definitions for BSI event (central line and non-central line-associated BSI) from its publication in 2013 and their amendments until its latest publication in 2019: “A patient of any age has a recognized pathogen cultured from one or more blood cultures and organism cultured from blood that is not related to an infection at another site.”15-18

PVCA-BSI. US CDC/NHSN’s definitions do not include the surveillance definition of PVCA-BSI.15-18 We applied the CDC/NHSN’s definition for patients that met all the criteria for BSI, but never used central lines, nor peripherally inserted central catheters. “PVC” includes the following devices: “short peripheral cannulas” (≤6 cm), “long peripheral cannulas” (6–12 cm long, sometimes defined as “short-midlines”) and “midline catheters” (15–25 cm long). In this study, we have considered only short cannulas (<6 cm) before the acquisition of a BSI.

Calculation
Data uploaded to ISOS were used to calculate PVCA-BSI rates per 1000 device-days, mortality, and LOS, according to the following formulas: device-days consisted of the total number of PVC-days.

Crude excess mortality of PVCA-BSI equaled crude mortality of ICU patients with PVCA-BSI minus crude mortality of patients without PVCA-BSI.

Crude excess LOS of PVCA-BSI equaled crude LOS of ICU patients with PVCA-BSI minus crude LOS of patients without PVCA-BSI.

Device utilization ratio (DUR) equaled the total number of peripheral venous catheter-related (PVCR)-days divided by the total number of bed days.

To calculate extra LOS and extra mortality, all central line-associated BSIs were excluded, and only patients with PVCs, both with or without BSIs, were included.

Follow-up of patients
To estimate PVCA-BSI rate and excess mortality attributable to PVCA-BSI, all patients were followed over 15 days, after step-down from the ICU.

Statistical analysis
ISOS version 2.0 (Buenos Aires, Argentina) was used to calculate PVCA-BSI rates, DURs, LOS, and mortality. EpilInfo® version 6.04b (CDC, Atlanta, GA) and SPSS 16.0 (SPSS Inc., an IBM company, Chicago, IL) were also used; 95% confidence intervals (CIs) and p values were determined for all outcomes.

Setting
The study was conducted in 727 ICUs from 268 hospitals in 141 cities of 8 countries in the South-East Asia Region (China, India, Malaysia, Mongolia, Nepal, Philippines, Thailand, and Vietnam), through the implementation of the ISOS, as described above.

All the cohort of patients admitted to the ICUs during the study period was enrolled in the study with hospitals’ Research Ethics Committees approval.

In accordance with the INICC protocol, hospitals’ identities are kept under confidentiality and patient data were anonymized.13
Table 1. Type of ICU and hospitals’ ownership.

<table>
<thead>
<tr>
<th>ICUs type</th>
<th>No. of ICUs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burn</td>
<td>2</td>
<td>0.76</td>
</tr>
<tr>
<td>Cardiothoracic</td>
<td>12</td>
<td>4.58</td>
</tr>
<tr>
<td>Coronary</td>
<td>21</td>
<td>8.02</td>
</tr>
<tr>
<td>Medical</td>
<td>50</td>
<td>19.08</td>
</tr>
<tr>
<td>Medical/surgical</td>
<td>86</td>
<td>32.82</td>
</tr>
<tr>
<td>Neurosurgical</td>
<td>21</td>
<td>8.02</td>
</tr>
<tr>
<td>Neurologic</td>
<td>10</td>
<td>3.82</td>
</tr>
<tr>
<td>Pediatric</td>
<td>15</td>
<td>1.91</td>
</tr>
<tr>
<td>Respiratory</td>
<td>5</td>
<td>10.69</td>
</tr>
<tr>
<td>Surgical</td>
<td>28</td>
<td>2.29</td>
</tr>
<tr>
<td>Trauma</td>
<td>6</td>
<td>2.67</td>
</tr>
<tr>
<td>Other</td>
<td>7</td>
<td>3.34</td>
</tr>
<tr>
<td>Total</td>
<td>262</td>
<td>100</td>
</tr>
</tbody>
</table>

Hospitals

Academic teaching, n, % 8 | 10.25
Public, n, % 5 | 6.14
Private community, n, % 65 | 82.33
Total hospitals, n, % 78 | 100

ICU: intensive care unit.

Results

During the study period of 6 years, from 1 September 2013 to 31 May 2019, the mean length of participation of the ICUs was 21 months (standard deviation (SD): 26.2 months), ranges from 2 to 147 months.

Table 1 shows type of ICUs and type of hospitals’ ownership. The predominant types of ICU were medical/surgical (32.82%), medical (19.08%), and surgical (10.69%). Private community hospitals amounted to 82.33%.

Table 2 shows PVC-BSI rates and DURs by type of ICU. The pooled mean rate was 2.65 PVC-BSI per 1000 PVC-days. The pooled DUR mean was 1.04 (1.03–1.04, 95% CI; 0.63 SD).

Table 3 provides data on crude ICU mortality and crude LOS in patients with and without PVC-BSI. The pooled mean of crude mortality was 12.21% in patients infected with PVC-BSIs and 4.53% in patients with PVC that were not infected. The excess LOS of patients with PVC-BSI was 62% higher than in patients without PVC-BSI.

Table 2. Pooled means, 95% confidence intervals of the distribution of short-term peripheral venous catheter-associated bloodstream infections rates by type of location, in adult and pediatric intensive care units.

<table>
<thead>
<tr>
<th>Type of ICU</th>
<th>ICU, n</th>
<th>Patients, n</th>
<th>PVCA-BSIs, n</th>
<th>Bed days</th>
<th>PVC days, n</th>
<th>Pooled PVC-BSI rate</th>
<th>Device utilization ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burn</td>
<td>2</td>
<td>184</td>
<td>14</td>
<td>2316</td>
<td>2108</td>
<td>6.64</td>
<td>0.99 (0.96–1.01)</td>
</tr>
<tr>
<td>Cardiothoracic</td>
<td>12</td>
<td>534</td>
<td>1</td>
<td>1958</td>
<td>2259</td>
<td>0.44</td>
<td>1.06 (0.98–1.15)</td>
</tr>
<tr>
<td>Coronary</td>
<td>21</td>
<td>2818</td>
<td>19</td>
<td>9864</td>
<td>10,343</td>
<td>1.84</td>
<td>1.07 (1.04–1.09)</td>
</tr>
<tr>
<td>Medical</td>
<td>50</td>
<td>15,954</td>
<td>88</td>
<td>78,145</td>
<td>75,710</td>
<td>1.16</td>
<td>0.97 (0.96–0.97)</td>
</tr>
<tr>
<td>Medical/surgical</td>
<td>86</td>
<td>47,743</td>
<td>777</td>
<td>201,654</td>
<td>207,933</td>
<td>3.74</td>
<td>1.04 (1.04–1.05)</td>
</tr>
<tr>
<td>Neurosurgical</td>
<td>21</td>
<td>3446</td>
<td>6</td>
<td>15,799</td>
<td>15,418</td>
<td>0.39</td>
<td>1.01 (0.98–1.04)</td>
</tr>
<tr>
<td>Neurologic</td>
<td>10</td>
<td>751</td>
<td>14</td>
<td>3203</td>
<td>3445</td>
<td>4.06</td>
<td>1.08 (1.06–1.10)</td>
</tr>
<tr>
<td>Pediatric</td>
<td>15</td>
<td>4240</td>
<td>55</td>
<td>20,173</td>
<td>24,447</td>
<td>2.25</td>
<td>1.28 (1.27–1.30)</td>
</tr>
<tr>
<td>Respiratory</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>44</td>
<td>38</td>
<td>0.00</td>
<td>0.97 (0.63–1.31)</td>
</tr>
<tr>
<td>Surgical</td>
<td>28</td>
<td>5162</td>
<td>16</td>
<td>27,103</td>
<td>25,889</td>
<td>0.62</td>
<td>0.98 (0.97–0.99)</td>
</tr>
<tr>
<td>Trauma</td>
<td>6</td>
<td>2179</td>
<td>6</td>
<td>8069</td>
<td>7872</td>
<td>0.76</td>
<td>0.98 (0.97–0.99)</td>
</tr>
<tr>
<td>Other</td>
<td>7</td>
<td>273</td>
<td>3</td>
<td>1043</td>
<td>1030</td>
<td>2.91</td>
<td>0.99 (0.97–1.02)</td>
</tr>
<tr>
<td>Pooled (adult and pediatric ICUs)</td>
<td>262</td>
<td>83,294</td>
<td>999</td>
<td>369,371</td>
<td>376,492</td>
<td>2.65</td>
<td>1.04 (1.03–1.04)</td>
</tr>
</tbody>
</table>

ICU: intensive care unit; PVCA-BSI: short-term peripheral venous catheter–associated bloodstream infections; PVC: short-term peripheral venous catheter; CI: confidence interval; SD: standard deviation.

ICU: intensive care unit; PVCA-BSI: short-term peripheral venous catheter–associated bloodstream infections; PVC: short-term peripheral venous catheter; CI: confidence interval; SD: standard deviation.

Table 3. Pooled means of the distribution of crude mortality and length of stay of intensive care unit patients with short-term peripheral venous catheter–associated bloodstream infections in adult and pediatric intensive care units combined.

<table>
<thead>
<tr>
<th>No. of deaths</th>
<th>No. of patients</th>
<th>Pooled crude mortality, % (mean; standard deviation; 95% CI)</th>
<th>LOS, total days</th>
<th>Pooled mean LOS, days (standard deviation; 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult and pediatric patients, without PVC-BSI</td>
<td>3731</td>
<td>82,295</td>
<td>4.53% (0.05; 0.21; 0.04–0.05)</td>
<td>362,269</td>
</tr>
<tr>
<td>Adult and pediatric patients, with PVC-BSI</td>
<td>122</td>
<td>999</td>
<td>12.21% (0.12; 0.33; 0.11–0.13)</td>
<td>7102</td>
</tr>
<tr>
<td>Total</td>
<td>3853</td>
<td>83,295</td>
<td>-</td>
<td>369,371</td>
</tr>
</tbody>
</table>

CI: confidence interval; LOS: length of stay; PVC-BSI: short-term peripheral venous catheter–associated bloodstream infections.
Table 4. Antimicrobial resistance rates in intensive care units.

<table>
<thead>
<tr>
<th>Pathogen, antimicrobial</th>
<th>No. of pathogenic isolated tested at INICC ICUs, pooled (n)</th>
<th>Resistance percentage, % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FQs</td>
<td>12</td>
<td>25.00 (3)</td>
</tr>
<tr>
<td>PIP or TAZ</td>
<td>12</td>
<td>25.00 (3)</td>
</tr>
<tr>
<td>AMK</td>
<td>13</td>
<td>30.77 (4)</td>
</tr>
<tr>
<td>IPM or MEM</td>
<td>11</td>
<td>36.36 (4)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRO or CAZ</td>
<td>16</td>
<td>81.25 (13)</td>
</tr>
<tr>
<td>IPM, MEM, or ETP</td>
<td>32</td>
<td>53.13 (17)</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPM or MEM</td>
<td>7</td>
<td>71.42 (5)</td>
</tr>
<tr>
<td>FQs</td>
<td>8</td>
<td>87.5 (7)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRO or CAZ</td>
<td>47</td>
<td>63.82 (30)</td>
</tr>
<tr>
<td>IPM, MEM, or ETP</td>
<td>73</td>
<td>9.59 (7)</td>
</tr>
<tr>
<td>FQs</td>
<td>66</td>
<td>57.58 (38)</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA</td>
<td>22</td>
<td>59.09 (13)</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN</td>
<td>2</td>
<td>0.00 (0)</td>
</tr>
</tbody>
</table>

INICC: International Nosocomial Infection Control Consortium; ICU: intensive care unit; PVC: short-term peripheral venous catheter; PVC-BSI: PVC-associated bloodstream infections; FQs: fluoroquinolones (ciprofloxacin, levofloxacin, moxifloxacin, or ofloxacin); PIP: piperacillin; TAZ: piperacillin-tazobactam; AMK: amikacin; IPM: imipenem; MEM: meropenem; CRO: ceftiraxone; CEP: cefazidime; ETP: ertapenem; OXA: oxacillin; VAN: vancomycin.

Table 4 provides data on bacterial resistance of pathogens isolated from patients with PVC-BSI in adult and pediatric ICUs. Resistance of *Pseudomonas aeruginosa* to imipenem (IPM) or meropenem (MEM) was 36.36%, of *Acinetobacter baumannii* to IPM or MEM was 71.42% and to fluoroquinolones was 87.5%, and of *Klebsiella pneumoniae* to ceftiraxone or cefazidime was 81.25%. Regarding Gram-positive bacteria, *Staphylococcus aureus*’s resistance to oxacillin was 59.09% and *Enterococcus faecalis* was 100% sensitive to vancomycin.

Figure 1 shows microorganism profile of PVC-BSIs.

There was a predominance of Gram-negative bacteria (67.1%) with *Escherichia coli* (22.9%) and *K. pneumoniae* (10.7%). The predominant Gram-positive bacteria found were *S. aureus* (11.4%) and Coagulase-negative *Staphylococci* spp (8.2%).

Discussion

To date, there are no previous representative studies of PVC-BSI rates conducted in countries from the South-East Asia Region, nor in most resource-limited countries worldwide from the six WHO regions.

This comprehensive study with 83,295 patients is unprecedented in this region in terms of both the data presented and the analyses conducted to calculate PVC-BSI rates per 1000 device-days. The mean rate found in our study was 2.65 PVC-BSIs per 1000 PVC-days. So far, the incidence of PVC-BSI has been published by 1000 PVC-days in only two studies from industrialized countries so far: in a systematic review with data from only three industrialized countries (the United States, Australia, and Italy) published in 2006, with a PVC-BSI rate of 0.5 per 1000 PVC-days, and in a recent study conducted in Australia, with a rate of 0.67 PVC-BSI per 1000 PVC-days.

In a recently published systematic review by the Alliance for Vascular Access Teaching and Research (AVATAR) group, PVC-days were not reported as denominators of PVC-BSIs rates. Therefore, this published data cannot be benchmarked against our data. In the cited review, studies reported PVC-BSI rates as follows: Australia (0.39 PVC-BSI per 10,000 occupied-bed days); Germany (3.04 PVC-BSI per 1000 patient-days); Spain (1.17 PVC-BSI per 10,000 patient-days; and 0.05 PVC/1000 patient-days); and the United States (0.0150 PVC-BSI per 100 patient-days; and 0.57 PVC/BSI per 100 patient-days).

In 2016, INICC published data of central-line-associated BSI (CLABSI) in 50 countries, prospectively collected from 2010 to 2015, from 861,284 ICU patients for 3,506,562 bed-days. Pooled rates for adult and pediatric ICUs were 4.4 CLABSIs per 1000 central line-days. The comparison of INICC these data published in 2016 of CLABSI with this study’s INICC present data on PVC-BSI shows the pooled rate of CLABSI is 70% higher than the PVC-BSI rate. However, since around 80%-90% of the vascular catheters used worldwide are PVCs, the raw number of BSIs due to PVC is around six times higher than due to CL.

In our ICUs, the pooled mean of the distribution of crude mortality amounted to 12.21% of PVC-BSIs cases, compared with 4.53% mortality of patients with PVC that were not infected. In recent studies from Spain and Japan, mortality attributable to PVC-BSI was 13.2% and 12.9%, respectively.

The excess LOS of patients with PVC-BSI in our study was 62% higher than in patients without PVC-BSI; in the previously cited study from Japan, patients who had acquired PVC-BSI required a longer duration of antibiotic treatment (33.5 vs. 15.8 days; p = 0.004) than patients without PVC-BSI.

Regarding the microorganism profile of PVC-BSI, in our ICUs, there was a predominance of Gram-negative bacteria (67.1%): *E. coli* (22.9%), *K. pneumoniae* (10.7%), and others. Within the 29.3% of Gram-positive bacteria found, the predominant were *S. aureus* (11.4%) and Coagulase-negative *Staphylococci* spp (8.2%). This contrasts with findings from industrialized countries, in which Gram-positive pathogens were the predominant cause of PVC-BSI.
Microorganism profile of short-term peripheral venous catheter-associated bloodstream infections

- Staphylococcus aureus; 89%; 11%
- Escherichia coli; 178%; 23%
- Klebsiella pneumoniae; 83%; 11%
- Pseudomonas aeruginosa; 41%; 5%
- Kathribacteriaceae; 33%; 4%
- Enterobacter spp; 35%; 40%
- Candida spp; 28%; 4%
- Acinetobacter baumannii; 27%; 3%
- Klebsiella spp; 24%; 3%
- Enterococcus spp; 20%; 3%
- Coagulase-negative Staphylococci spp; 64%; 8%
- Cryptococcus laurentii; 1%; 0%
- Other gram-negative bacteria; 101%; 13%
- Other gram-positive bacteria; 25%; 3%
- Streptococcus pneumoniae; 17%; 2%
- Streptococcus spp; 13%; 2%
- Other microorganisms that individually accounted for <1%: Achromobacter spp, Acinetobacter lwoffi, Acinetobacter sp, Pseudomonas sp, Salmonella spp, Serratia marcescens, and Zymaphilus.

Resistance of *P. aeruginosa* to fluoroquinolones, piperacillin, piperacillin-tazobactam, and amikacin was 25% and to IPM or MEM was 36.36%; of *A. baumannii* to IPM or MEM was 71.42% and to fluoroquinolones was 87.5%; and of *K. pneumoniae* to ceftriaxone or cefazidime was 81.25% and to IPM or MEM or cefepime was 53.13%.

Regarding Gram-positive bacteria, resistance of *S. aureus* to oxacillin in 59.99% of cases and *E. faecalis* was 100% sensitive to vancomycin, similar to the findings of a study from India.²⁹

Conclusion

This study presents the only available comprehensive data from eight countries of the South-East Asia Region showing PVCA-BSIs per 1000 PVC-days, which were much higher than the data available from industrialized countries. PVCA-BSI prevention programs should be implemented in healthcare facilities in this Region to reduce PVCA-BSI rates.

Acknowledgements

The authors thank the many healthcare professionals who assisted with the conduct of surveillance; Débora López Burgardt, who works at INICC in Buenos Aires; the INICC Country Directors and Secretaries (Aaltf Ahmed, Carlos A. Alvarez-Moreno, Amracha Apsanathanarak, Bijie Hu, Hakum Leblafie, Yatin Mehta, Toshihiro Mitsuda, and Lul Rakaj); and the INICC Advisory Board (Carlos J. Alvarado, Nicholas Graves, William R. Jarvis, Patricia Lynch, Dennis Maki, Toshihiro Mitsuda, Russell N. Olmsted, William Rona, Syed Sattar, and Wing Hong Seto).

Author contributions

All authors were involved in drafting of the manuscript, provision of study patients, collection of data, critical revision of the manuscript for important intellectual content, and final approval of the manuscript. VDR was responsible for study conception and design; software development; data assembly, analysis, and
interpretation; epidemiologic analysis; statistical analysis; and administrative, technical, and logistical support.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Funding was provided by the corresponding author, Victor Daniel Rosenthal, and the Foundation to Fight against Nosocomial Infections.

ORCID ID
Victor Daniel Rosenthal https://orcid.org/0000-0001-9138-4801

References

Appendix 1

China: Guo, C.; Yu, H.; Liu, T.; Song, G.; Wang, C.

Nepal: Koirala, A.; GirI, R.; Sainju, S.; Acharya, S.P.

Philippines: Mendoza, M. T.; Javellana, O. P.; Tajanlangit, A.N.L.; Navo-Ng, J. A.; Sg-Buenavilor, M. C.; Berba, R.; Labro, E.; Carma, R.; Dyr, A.M.P.; Fortin, J.D.; Cesar, J.L.; Bonifacio, B.S.; Llames, M.J.P.; Gata, H.L.B.; Tamayo, A.S.; Calupit, H.K.E.; Cachio, V.V.; Bergosa, L.D.; Abuy, M.T.B.; Dayapera, K.M.

Thailand: Khaenkaw, Y.; Lamangkasupha, J.; Siriyakorn, N.; Prasannthai, V.